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Background and aims: This study explored the hepatoprotection of high concentrations of hydrogen
(HCH) inhalation in a mouse hepatic ischemia/reperfusion (I/R) injury model and the potential mecha-
nism.
Methods: To explore the role of the PI3K-Akt pathway in the hepatoprotection of HCH, C57BL/6 mice
were randomly divided into five groups: Sham, I/R, I/R + HCH, LY294002 (PI3K inhibitor) + I/R + HCH,
and LY + I/R groups. Mice received inhalation of 66.7% hydrogen and 33.3% oxygen for 1 h immediately
after surgery. LY294002 was intravenously injected at 10 mol/kg. To explore whether PI3K-Akt pathway
activation was mediated by the A2A receptor, additional four groups were included: ZM241385 (A2A

receptor antagonist) + I/R + HCH, ZM241385 + I/R, bpv(HOpic) (PTEN inhibitor) + I/R, and ZM241385
+ bpv + I/R + HCH. Six hours after I/R, serum biochemistry, histological examination, Western blotting,
and immunohistochemistry were performed to evaluate the hepatoprotection of HCH and the role of
the PI3K-Akt pathway and A2A receptor in this protection.
Results: Liver dysfunction, hepatic pathological injury, infiltration of inflammatory cytokines, and hepa-
tocyte apoptosis were observed after hepatic I/R, accompanied by inhibition of the PI3K-Akt pathway.
HCH significantly improved liver function, reduced serum inflammatory cytokines, and inhibited hepato-
cyte apoptosis, and also induced the PI3K-Akt pathway activation. In the presence of LY294002 or
ZM241385, the protective effects of HCH were markedly attenuated, but the effects of ZM241385 were
reversed by bpv(HOpic).
Conclusion: Our findings indicate that HCH may protect the liver against I/R injury through the A2A

dependent PI3K-Akt pathway.
� 2017 Elsevier Inc. All rights reserved.
1. Introduction

Hepatic ischemia and reperfusion (I/R) injury is a phenomenon
in which cellular damage is induced by hypoxia following the
restoration of blood flow and oxygen delivery after transplantation
surgery, tissue resections, and hemorrhagic shock [1]. Pathologi-
cally, liver I/R injury may cause hepatocyte swelling, hepatocyte
vacuolization, endothelial cell disruption, neutrophil infiltration,
and hepatocyte necrosis and apoptosis [2]. Hepatic I/R injury
may significantly compromise graft survival and postoperative
liver function, resulting in a high mortality. It affects liver function
and significantly increases the risk to the circulatory system and
respiratory system [3]. To date, numerous studies have explored
the treatment and prevention of liver I/R injury [4–6], but no effec-
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tive strategies have been developed. Therefore, liver I/R injury is an
important clinical problem that requires further study.

In the pathogenesis of hepatic I/R injury, oxidative stress and
inflammation are the two major mechanisms, and some strategies
targeting reactive oxygen species (ROS) and inflammation are used
for the treatment of hepatic I/R injury [7,8].

Hydrogen is the simplest molecule in nature. It not only exists
in nature but also can be generated in the human intestine. Tradi-
tionally, it is believed to function as an inert gas at body tempera-
ture in mammalian cells because it cannot react with biological
compounds, including oxygen (O2) gas, in the absence of catalysts
at body temperature. Thus, hydrogen has been used during deep
diving for the prevention of nitrogen narcosis [9]. In recent years,
hydrogen has been found to protect against I/R injury to the brain
[10], heart [11], kidney [12], liver [13,14], and retina [15], mainly
by scavenging hydroxyl radicals, inhibiting inflammation, and sup-
pressing cell apoptosis. However, in most studies, 2% or 4% hydro-
gen gas was used [10]. Recently, our group treated diseases with
high concentrations of hydrogen (HCH) gas (67% H2, 33% O2) in ani-
mal models [15,16]. The mixed gas is produced using an AMS-H-01
hydrogen oxygen nebulizer (Asclepius, Shanghai, China), which can
produce H2 and O2 by electrolyzing water [15,16]. Whether HCH is
also protective towards hepatic I/R injury and, if so, the mechanism
underlying the hepatoprotection of HCH remains unclear.

The phosphatidylinositol-3-kinase (PI3K)/Akt pathway is
important for cell survival, and activation of the PI3K/Akt pathway
has been found to protect cells against injury. Previous studies
have shown that PI3K/Akt pathway activation is important for pro-
tection against I/R injury [17,18]. In addition, studies have shown
that A2A receptor is involved in hepatic protective effect [19], and
the PI3K/Akt pathway can be regulated by A2A receptor [20].

This study was performed to explore the protective effects of
HCH on hepatic I/R injury and to examine the role of the A2A recep-
tor and PI3K/Akt pathway in the protective effects of HCH.
2. Materials and methods

2.1. Animals

A total of 96 male C57BL/6 wild-type (WT) mice aged 8–
10 weeks and weighing 20–25 g were purchased from the Experi-
mental Animal Center of the Second Military Medical University,
Shanghai, China. Mice were housed in a specific pathogen free
environment with a 12-h/12-h light/dark cycle and given ad libitum
access to food and water. All procedures were performed according
to the recommendations of the Committee of the Care and Use of
Laboratory Animals at the Second Military Medical University. This
study was approved by the Ethics Committee of the Second Mili-
tary Medical University.
2.2. Establishment of liver I/R model in mice

Mice were intraperitoneally anesthetized with 10% chloral
hydrate (SINOPHARM, Shanghai, China) at 5 mL/kg. A model of par-
tial (70%) warm hepatic I/R was established as previously reported
with minor modifications [21]. Briefly, after a midline laparotomy,
the left porta hepatis was obstructed with a clamp for 60 min, after
which the clamp was removed for reperfusion. The body tempera-
ture of mice was maintained at 37 �C during the operation with a
heating pad.
2.3. Animal grouping

This study was divided into two experiments (Fig. 1), as follows:
Experiment 1: To investigate the hepatoprotective effects of HCH
on hepatic I/R injury and the role of the PI3K-Akt pathway, animals
were randomly divided into the following groups: a) Sham group:
after intraperitoneal anesthesia, a midline laparotomy was per-
formed without any other procedures; b) hepatic I/R group: I/R
was induced as described above; c) I/R + HCH group: immediately
after hepatic I/R, animals were exposed to a 66.7% hydrogen and
33.3% oxygen mixture for 1 h at normal pressure; d) LY (Akt inhi-
bitor) + HCH + I/R group: LY294002 (Akt inhibitor, 10 mol/kg)
(Sigma-Aldrich, America) was administered intravenously 10 min
before ischemia; and e) LY + I/R group: LY294002 at 10 mol/kg
was intravenously administered 10 min before ischemia.

Experiment 2: To explore the role of A2A receptor in HCH-
induced PI3K-Akt activation, additional four groups were included:
f) ZM (ZM241385, A2A receptor antagonist) (Sigma-Aldrich, Amer-
ica) + HCH + I/R + group: A2A receptor antagonist ZM241385
(0.2 mg/kg) was intravenously administered 10 min before ische-
mia; g) ZM + bpv(HOpic) + HCH + I/R group: ZM241385 (0.2 mg/
kg) and bpv(HOpic) (0.05 mg/kg) were intravenously administered
10 min before ischemia; h) ZM + I/R group: ZM241385 (0.2 mg/kg)
was intravenously administered 10 min before ischemia; and i)
bpv(HOpic) + I/R group: bpv(HOpic) (0.05 mg/kg) was intra-
venously administered 10 min before ischemia.

After 6-h reperfusion [20], blood was collected for the detection
of alanine aminotransferase (ALT), tumor necrosis factor a (TNF-a),
interleukin-6 (IL-6), and IL-1b, and the liver was harvested for
detection of the injured area ratio after HE staining. Protein expres-
sion of Akt, p-Akt, JNK, p-JNK, GSK-3b, p-GSK-3b, Bad, p-Bad, Fas,
Fas-L, NF-jB p65, and cleaved caspase-3 was determined by Wes-
tern blotting of the liver, and p-Akt, MPO, cleaved caspase-3, and
NF-jB p65 were analyzed using immunohistochemistry.

2.4. HCH treatment

For HCH treatment, animals were placed in a chamber that was
flushed with 66.7% hydrogen and 33.3% oxygen produced with the
AMS-H-01 hydrogen producer (Asclepius, Shanghai, China), which
was designed to electrolyze water to produce mixed gas. In the
control group, 33.3% oxygen with 66.7% nitrogen was used to treat
animals. HCH treatment last for 60 min.

2.5. Sample collection

After 6-h reperfusion, blood was collected from the left ventri-
cle and liver tissues were harvested for further detection. The
serum was separated and stored at 4 �C, followed by detection of
alanine aminotransferase (ALT), tumor necrosis factor a (TNF-a),
interleukin-6 (IL-6), and IL-1b. The liver tissues were divided into
two parts: one was stored at �80 �C and processed for Western
blotting and the other was fixed for histological examination and
immunohistochemistry.

2.6. Evaluation of liver injury

The degree of liver injury was evaluated by measuring serum
ALT level with an automatic biochemistry analyzer according to
the manufacturer’s instructions in the Department of Inspection,
Eastern Hepatobiliary Surgery Hospital. (ALT Activity Assay,
Sigma-Aldrich).

2.7. Histological examination

Liver tissues were fixed in 4% paraformaldehyde, embedded in
paraffin, and cut into 4-lm sections. Liver sections were subjected
to hematoxylin and eosin (H&E) staining. The necrotic area was



Fig. 1. Study flow chart and graphic abstract of the study.
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measured under a light microscope at a magnification of 100� in
10 randomly selected fields per liver.

2.8. Immunohistochemistry

Liver tissues were processed for immunohistochemistry with
the following antibodies: p-Akt (Abcam, 1:1000), NF-jB p65
(Abcam, 1:800), cleaved caspase 3 (Cell Signaling Technology,
1:1000), and myeloperoxidase (MPO; Abcam, 1:1000). Briefly, the
liver sections were de-paraffinized, re-hydrated with de-ionized
water, and washed three times with phosphate-buffered saline
(PBS). Sections were then incubated overnight at 4 �C with primary
antibodies. Sections were washed with PBS and incubated with
secondary antibodies at 37 �C for 30 min. After washing three
times with PBS for 5 min, sections were incubated with 0.05%
(w/v) 3,3-diaminobenzidine tetrahydrochloride dehydrate, coun-
terstained with hematoxylin, dehydrated, and mounted for micro-
scopic examination (Carl Zeiss Jena, Oberkochen, Germany).
Photographs were captured at a magnification of 400�, and posi-
tive cells were counted by two investigators in a blind manner.
Positive cells were expressed as the percentage of positive cells
per field.

2.9. Western blotting

Western blotting was performed as described previously with
the following antibodies: Akt, p-Akt, JNK, p-JNK, GSK-3b, p- GSK-
3b, Bad, p-Bad, Fas, Fas-L, NF-jB p65, and cleaved caspase-3
(Abcam, UK). Briefly, liver tissues were homogenized followed by
protein extraction. Nuclear protein was extracted with a nuclear
protein extraction kit (CelLyticTM NuCLEARTM Extraction Kit, Sigma-
Aldrich). After measurement of protein concentration using the
BCA method, proteins in each group (50 lg) were loaded and sub-
jected to sodium dodecyl sulfate-polyacrylamide gel electrophore-
sis (SDS-PAGE). The proteins were then transferred onto
polyvinylidene difluoride (PVDF) membranes. The membranes
were independently incubated with primary antibodies at 4 �C.
After washing, membranes were incubated with horseradish per-
oxidase conjugated secondary antibodies (1:2000) in 5% non-fat
milk in TBS-T at room temperature for 2 h. Bands were visualized
with chemiluminescence detection reagents (Bestbio, Shanghai,
China) according to the manufacturer’s instructions and then
quantified with the Quantity One Analysis Software (Bio-Rad).
The optical density (OD) of each band was normalized to that of
GADPH as an internal reference [22].

2.10. Enzyme-linked immunosorbent assay

The serum was separated and used for the measurement of
TNF-a, IL-1b, and IL-6 using an enzyme-linked immunosorbent
assay (ELISA) with the corresponding commercial kits (R&D Sys-
tems, Minneapolis, MN, USA), following the manufacturer’s
instructions. The absorbance was measured at 450 nm with a
microplate reader (ELx800, BioTek).

2.11. Statistical analysis

Statistical analyses were performed using SPSS version 16.0
software (SPSS, Chicago, IL, USA). Comparisons were performed
with one-way analysis of variance (ANOVA) among groups, fol-
lowed by a SNP test. A value of p < 0.05 was considered statistically
significant.

3. Results

3.1. Inhibition of the PI3K/Akt pathway activation attenuates the
hepatoprotective effects of HCH on hepatic I/R injury

Serum ALT in the I/R group (8351.583 ± 1310.280 IU/L)
increased significantly compared with the Sham group
(25.833 ± 8.747 IU/L) as shown in Fig. 2A. HCH significantly
decreased I/R induced increases in serum ALT
(1739.583 ± 419.826 IU/L). LY294002, an inhibitor of PI3K, signifi-
cantly increased serum ALT after HCH treatment
(7099.417 ± 973.170 IU/L). Moreover, there was a significant differ-
ence in the serum ALT between I/R group and LY + I/R + HCH group.
However, there was no significant difference in serum ALT
between I/R group and LY + I/R group. The change in the ratio of
injured area was the same as serum ALT (Fig. 2B and C). The ratio
of injured area was 0% in the Sham group and 71.3% in the I/R



Fig. 2. Serum ALT levels, necrosis area and p-Akt expression after I/R in experiment 1. Six hours after I/R, the animals were sacrificed and the livers were collected for the
detection of the necrosis area (B, C), immunohistological staining (B, D) and Western Blot (E, F), and blood was drawn for ALT detection (A). According to the result, HCH
reduced ALT levels (A) and necrosis area (B, C) after I/R, and promoted p-Akt expression (B, D–F). These effects were attenuated by LY294002. Data are expressed as
mean ± SD. *p < 0.05 vs. Sham group; #p < 0.05 vs. I/R group; §p < 0.05 vs. I/R + HCH group. Magnification = 100�.
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group, but HCH significantly reduced the ratio of injured area
(21.9%) compared with the I/R group. In addition, the ratio of
injured area in LY + I/R + HCH group (64.5%) was significantly
higher than in the I/R + HCH group (Fig. 2B and C), and there was
a significant difference in the ratio of injured area between the IR
group and LY + I/R + HCH group. There was no significant differ-
ence in the ratio of injured area between I/R and LY + I/R groups.
3.2. HCH increases Akt phosphorylation

The liver tissues were harvested after 6-h reperfusion and pro-
cessed for Western blotting. Total Akt expression was comparable
among groups, as shown in Fig. 2E. p-Akt expression increased in
the I/R group compared with the Sham group. In the I/R + HCH
group, p-Akt expression further increased and was significantly
higher than in the I/R group. However, LY294002 inhibited HCH-
induced phosphorylation of Akt (Fig. 2F).

p-Akt protein expression was further detected by immunohis-
tochemistry (Fig. 2B). In the Sham group, there were no p-Akt pos-
itive cells in the liver (0%), as shown in Fig. 2D. In the I/R group, the
percentage of p-Akt positive cells increased significantly in the
liver (47.2%), and HCH further enhanced p-Akt positive cells after
I/R (72.8%). The increased p-Akt positive cells were reduced by
LY294002 (25.0%) compared with the I/R and I/R + HCH groups.
3.3. HCH protects hepatocytes against apoptosis by modulating
downstream effectors of Akt

Fas and Fas-L are apoptosis inducers and their expressions are
related to the PI3K-Akt pathway [23,24]. Western blotting showed
that protein expression of Fas and Fas-L increased significantly in
the I/R group compared with the Sham group (Fig. 3A). HCH
reduced the expression of Fas and Fas-L; however, this effect was
attenuated by LY294002.

Caspase-3 is an executive factor in apoptosis. Western blotting
showed that cleaved caspase-3 increased significantly after I/R
compared with the Sham group (Fig. 3A and C) but decreased
markedly with HCH. However, the reduction in cleaved caspase-3
was inhibited in the presence of LY294002. Similar findings were
also observed in the immunohistochemistry (Fig. 3B and D).
Almost no cleaved caspase-3 positive hepatocytes were observed
in the liver of the Sham group, but they increased significantly after
hepatic I/R (from 0.6% to 22.8%, P < 0.05). After HCH treatment, the
percentage of cleaved caspase-3 positive hepatocytes decreased
markedly compared with the I/R group (from 22.8% to 8.4%,
P < 0.05). In the presence of LY294002, the percentage of cleaved
caspase-3 positive hepatocytes increased significantly compared
with the I/R + HCH group (from 8.4% to 23.8%, P < 0.05) and was
even higher than in the I/R group.

JNK is an important molecule related to apoptosis. Phosphoryla-
tion of JNK may lead to apoptosis, and Akt activation is able to
reduce JNK phosphorylation [25]. In the I/R group, p-JNK increased
significantly but decreased after HCH treatment. In addition,
LY294002 abolished HCH-induced reduction in p-JNK
(Fig. 3A and C).

Other Akt downstream molecules, such as Bad and GSK-3b, are
known to possess anti-apoptotic activity. After I/R, GSK-3b and Bad
were slightly phosphorylated, but phosphorylated GSK-3b and Bad
increased significantly in the I/R+ HCH group compared with the I/
R group. In addition, the enhanced phosphorylation of GSK-3b and
Bad was attenuated by LY294002, and it was even lower than in
the I/R group (Fig. 3A and C).
3.4. HCH reduces I/R induced hepatic inflammation

TNF-a, IL-6, and IL-1b are important cytokines related to
inflammation [26,27]. ELISA was used to measure the contents of
TNF-a (Fig. 4A), IL-6 (Fig. 4B), and IL-1b (Fig. 4C) in the serum. In
the I/R group, the contents of these cytokines were significantly
higher than in the Sham group. HCH treatment significantly
reduced these pro-inflammatory cytokines compared with the I/R
group, but the HCH-induced reduction in these cytokines was
attenuated by LY294002.

NF-jB p65 is a classic inflammatory molecule, and inflamma-
tion can induce the nuclear translocation of NF-jB p65 [28]. As
shown in Western blotting (Fig. 4F), the nuclear NF-jB p65 in
the I/R group was markedly higher than in the Sham group, but
HCH treatment significantly reduced the nuclear NF-jB p65 after
I/R. In addition, HCH-induced reduction in nuclear NF-jB p65
was abolished by LY294002.



Fig. 3. Western blot of apoptosis factors and Akt downstreammolecules, and immunohistology of liver tissue by cleaved caspase-3 after I/R in experiment 1. Six hours after I/
R, the animals were sacrificed and the livers were collected for western blot (A, C) and immunohistological staining (B, D). According to the result, apoptosis factors decreased
after HCH treatment and Akt downstream anti-apoptosis molecules were induced (A, C). Immunohistological staining reflexed the decrease of cleaved caspase-3 after HCH
treatment at tissular level (B, D). These effect could be attenuated by LY294002. Data are expressed as mean ± SD. *p < 0.05 vs. Sham group; #p < 0.05 vs. I/R group; §p < 0.05 vs.
I/R + HCH group. Magnification = 400�.

Fig. 4. Serum cytokine levels, western blot of NF-jB p65 and immunohistological staining of MPO and NF-jB p65 after I/R in experiment 1. Six hours after I/R, the animals
were sacrificed, the serumwas drawn for cytokine analysis (A–C) and the livers were collected for western blot (F) and immunohistological staining (D, E, G). According to the
result, HCH treatment reduced the cytokine levels (A–C) and NF-jB p65 levels (F) after I/R. Immunohistological staining by MPO and NF-jB p65 antibodies showed the
positive rate of MPO was decreased and NF-jB p65 was reduced after HCH treatment (D, E, G). These effects could be attenuated by LY294002. Data are expressed as
mean ± SD. *p < 0.05 vs. Sham group; #p < 0.05 vs. I/R group; §p < 0.05 vs. I/R + HCH group. Magnification = 400�.
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The protective effects of HCH on liver inflammation after I/R
were further investigated by immunohistochemistry for NF-jB
p65 and MPO. As shown in Fig. 4E and G, the percentage of NF-
jB p65 positive cells was low in the Sham group (0.6%), but
increased significantly after hepatic I/R injury (11.5%). After HCH
treatment, the percentage of NF-jB p65 positive cells was reduced
significantly (4.1%). This finding was consistent with that from
Western blotting. In addition, LY294002 abolished the HCH-
induced reduction in NF-jB p65 positive cells (10.5%). MPO is a
marker of neutrophil activation [29]. As shown in Fig. 4D and G,
the percentage of MPO positive cells was significantly higher in
the I/R group than in the Sham group (22.8% vs 0%, P < 0.05), but
HCH treatment significantly reduced the percentage of MPO posi-
tive cells (11.3%). However, LY294002 abolished the HCH-
induced reduction in MPO positive cells compared with the LY
+ I/R + HCH group (21.9%).

3.5. A2A receptor blocker attenuates hepatoprotection of HCH

Studies have shown the therapeutic effects of A2A receptor acti-
vation on liver I/R injury [19]. ZM241385 is commonly used as an
antagonist of the A2A receptor [30]. As shown in Fig. 5A, ZM241385
administered 10 min before I/R abolished the HCH-induced reduc-
tion in serum ALT (1863.083 ± 707.785 IU/L vs
8381.083 ± 1459.775 IU/L, P < 0.05). In the presence of both
ZM241385 and bpv(HOpic) before I/R, serum ALT decreased signif-
icantly compared with ZM241385 pretreatment alone
(8381.083 ± 1459.775 IU/L vs 1542.417 ± 309.939 IU/L, P < 0.05).
Fig. 5. Serum ALT levels, necrosis area after I/R and p-Akt expression in experiment 2. S
detection of the necrosis area (F), Western Blot (C, E) and immunohistological staining (
PTEN abolished the reduction of serum ALT levels (A) and necrosis area (F), which was in
bpv(HOpic). In addition, Akt activation induced by HCH treatment was abolished by PTEN
*p < 0.05 vs. Sham group; #p < 0.05 vs. I/R group; §p < 0.05 vs. I/R + HCH group; ǁp < 0.05
In addition, in the ZM + I/R group, serum ALT was increased slightly
compared with the I/R group (8570.500 ± 1424.906 IU/L vs
9688.083 ± 1330.451 IU/L, P = 0.0596). In bpv(HOpic) + I/R group,
bpv(HOpic) significantly reduced the serum ALT
(8570.500 ± 1424.906 IU/L vs 1853.167 ± 516.409 IU/L, P < 0.05).

As shown above, HCH treatment decreased the ratio of the
injured area, but this effect was attenuated by ZM241385. (13.9%
vs 76.6%, P < 0.05). In addition, bpv(HOpic) reduced the ratio of
the injured area in the presence of ZM241385 compared with
ZM241385 pretreatment alone (Fig. 5B and F) (76.6% vs 19.4%,
P < 0.05). There was no significant difference in injured area
between the I/R group and ZM + I/R group. The injured area was
significantly reduced in the bpv(HOpic) + I/R group compared with
the I/R group (68.2% vs 21.3%, P < 0.05).
3.6. HCH induced Akt phosphorylation is blocked by A2A receptor
antagonism, but restored by additional bpv(HOpic)

Western blotting showed that HCH-induced increases in p-Akt
were attenuated by ZM241385, but were restored by additional
bpv(HOpic) (Fig. 5C and E). This was further confirmed using
immunohistochemistry. As shown in Fig. 5D and F, the percentage
of p-Akt positive cells in the ZM + I/R + HCH group was signifi-
cantly lower than in the I/R + HCH group, but additional bpv
(HOpic) pre-treatment restored the HCH-induced increase in p-
Akt positive cells.
ix hours after I/R, the animals were sacrificed and the livers were collected for the
D, F). Blood was drawn for ALT detection (A). According to the result, application of
duced by HCH treatment. The protective effect could be re-established by the use of
and could be re-established by bpv(HOpic) (C–F). Data are expressed as mean ± SD.
vs. I/R group. Magnification = 400�.
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3.7. HCH induced anti-apoptotic and anti-inflammatory effects are
attenuated by A2A blocker, but restored by additional bpv(HOpic)

As shown above, HCH reduced significantly the expression of
cleaved caspase-3, Fas, Fas-L, and p-JNK, and increased the expres-
sion of p-GSK-3b and p-Bad in the liver after I/R injury. However,
these effects were abolished by ZM241385 pre-treatment (Fig. 6).
In addition, co-administration of ZM241385 and bpv(HOpic)
restored the effects of HCH, as shown by reduced expression of
cleaved caspase-3, Fas, Fas-L, and p-JNK, and also enhanced the
expression of p-GSK-3b and p-Bad (Fig. 6A and B). Inhibition of
apoptosis was further confirmed by immunohistochemistry for
cleaved caspase-3 (Fig. 6C and D).

As shown in Fig. 7A–C, the HCH-induced reduction in serum
pro-inflammatory cytokines was abolished by ZM241385 and
restored by additional bpv(HOpic). In addition, Western blotting
showed that HCH-induced reduction in NF-jB p65 after liver I/R
was abolished by ZM241385 and was re-stored by additional bpv
(HOpic) before I/R (Fig. 7F). Immunohistochemistry for NF-jB
p65 and MPO also confirmed the above findings (Fig. 7G and H).
Fig. 6. Western blot of apoptosis associated molecules, Akt downstream molecules and
hours after I/R, the animals were sacrificed and the liver was collected for western blot (A
induced decrease of apoptosis factors and increase of Akt downstream anti-apoptosis
Immunohistological staining by cleaved caspase-3 antibodies showed PTEN abolished t
(HOpic) (C, D). Data are expressed as mean ± SD. *p < 0.05 vs. Sham group; #p < 0.05
Magnification = 400�.
4. Discussion

In this study, we investigated the hepatoprotective effects of
HCH in a mouse model. Our results showed that, after liver I/R
injury, inhalation of hydrogen at a high concentration (66.7% H2)
improved the liver pathology and liver function, reduced the oxida-
tive stress and inflammation in the liver, and inhibited the apopto-
sis of hepatocytes after I/R injury, which were, at least partially,
related to the activation of A2A receptor mediated PI3K/Akt path-
way because inhibition of this pathway partially abolished the
hepatoprotective effects of HCH.

Hydrogen is the smallest molecule in nature and is non-toxic; in
recent years, several studies confirmed its organ protection in ani-
mal studies and clinical trials [31,32]. As a new, potent antioxidant,
hydrogen has some advantages over other commonly used antiox-
idants; for example, it is sufficiently mild as not to disturb meta-
bolic redox reactions or affect ROS because it mainly reacts with
highly toxic ROS hydroxyl radicals and peroxynitrite [10]. In addi-
tion, it has favorable distribution characteristics in its own physical
ability to penetrate biomembranes and diffuse through barriers
immunohistology of liver tissue by cleaved caspase-3 after I/R in experiment 2. Six
, B) and immunohistological staining (C, D). According to the result, HCH treatment
molecules could be abolished by PTEN and re-established by bpv(HOpic) (A, B).
he decrease of cleaved caspase-3 expression which could be re-established by bpv
vs. I/R group; §p < 0.05 vs. I/R + HCH group; ǁp < 0.05 vs. ZM + I/R + HCH group.



Fig. 7. Serum cytokine levels, western blotting of NF-jB and immunohistological staining of MPO and NF-jB after I/R in experiment 2. Six hours after I/R, the animals were
sacrificed, the serum was drawn for cytokine analysis (A, B, C) and the liver was collected for western blot (F) and immunohistological staining (D, E, G, H). According to the
result, HCH treatment reduced cytokines and this effect was abolished by the use of PTEN and re-established by bpv(HOpic) (A, B, C). Decrease of NF-jB p65 was abolished by
PTEN and it was re-established by bpv(HOpic) (F). Immunohistological staining showed that the decrease of MPO positive rate and NF-jB levels was abolished by PTEN and
re-established by bpv(HOpic) (D, E, G, H). Data are expressed as mean ± SD. *p < 0.05 vs. Sham group; #p < 0.05 vs. I/R group; §p < 0.05 vs. I/R + HCH group; ǁp < 0.05 vs. ZM + I/
R + HCH group. Magnification = 400�.
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into cellular components; and its metabolite is water, which is not
harmful to cells. Currently, hydrogen can be administered via
inhalation, intraperitoneal injection, and drinking [33]. For inhala-
tion, hydrogen is typically administered at a low concentration
(�4%) due to safety concerns, because it is highly flammable when
its concentration is higher than 4%. Compared with hydrogen
inhalation, intraperitoneal injection may ensure that the proper
dose of hydrogen administered, but it is an invasive technique. In
addition, although drinking hydrogen water has been used in pre-
vious studies, the amount of hydrogen in water may not be accu-
rate and the hydrogen concentration in the water may decrease
gradually over time. In recent years, a new hydrogen generator
was developed by the Asclepius company, which can produce
66.7% hydrogen and 33.3% oxygen by electrolyzing water [15,16].
With a specific technique, it may avoid the risk for explosion of
hydrogen at this high concentration. Our group has attempted to
use this generator for the treatment of diseases. Wang et al. found
that inhalation of HCH for 1 h after retinal I/R injury could attenu-
ate the injury [15], and Peng et al. found that this treatment was
also able to limit glyoxylate-induced calcium oxalate deposition
in mice [16]; these outcomes were ascribed to the anti-
inflammatory, anti-oxidative, and anti-apoptotic effects of hydro-
gen. Although the organ protective effects of low and high concen-
trations of hydrogen gas have been confirmed in numerous studies,
the specific molecular mechanism of HCH remains unclear.

The PI3K/Akt signaling pathway is involved in the regulation of
critical cellular functions including survival, proliferation, cell
cycle, and metabolism [34,35]. PI3K activation can phosphorylate
and activate Akt, localizing it in the plasma membrane. Upon acti-
vation, p-Akt phosphorylates a large number of downstream sub-
strates, offering the following effects: regulation of microtubule
dynamics and organization via GSK-3b and tau, regulation of cell
growth and protein synthesis by controlling the activity of the
mTOR/Raptor complex 1 (mTORC1), and promotion of cellular sur-
vival via either direct inactivation by phosphorylation of multiple
proapoptotic proteins or inhibition of Forkhead box transcription
factors [34,36,37]. The PI3K/Akt pathway is negatively regulated
by phosphatase and tensin homolog (PTEN), a lipid phosphatase
that dephosphorylates PIP3 [38]. Akt is a downstream effector of
PTEN, and PTEN activation may inhibit Akt activation. In this study,
bpv(HOpic), a PTEN inhibitor, was used to inhibit PTEN, activating
Akt.

Our results confirmed that hydrogen at a high concentration
was protective against hepatic ischemia, characterized by reduc-
tions in ALT and ischemic area, attenuation of hepatic inflamma-
tion, and alleviation of hepatocyte apoptosis. In the presence of
HCH treatment, additional LY294002 significantly increased ALT
and ischemic area, suggesting that the hepatoprotection of HCH
is associated with PI3K activation. As a downstream factor of the
PI3K pathway, Akt phosphorylation increased significantly after I/
R, which further increased after HCH treatment. However,
LY294002 inhibited the HCH-induced phosphorylation of Akt. In
addition, there were no significant differences in serum ALT and
ischemic area between I/R group and I/R + LY group, indicating that
LY294002 has no hepatoprotective effects. These results indicate
that the hepatoprotective effects of HCH are related to activation
of the PI3K/Akt signaling pathway; the protective effects were also
confirmed by the treatment of bpv(HOpic), a drug that can lead to
Akt activation. Of note, additional LY294002 only partially inhib-
ited the hepatoprotection of HCH because significant differences
were observed in ALT and ischemic area between the I/R group
and I/R + HCH + LY group, suggesting that the PI3K signaling path-
way is not the only pathway affected by hydrogen.

We further explored whether HCH-induced activation of PI3K/
Akt was dependent on A2A receptor activation. During A2A receptor
inhibition with ZM241385, the hepatoprotection of HCH was sig-
nificantly compromised, but additional bpv(HOpic) for Akt activa-
tion restored the hepatoprotection of HCH, which were further
confirmed by the detection of Akt phosphorylation. These results
indicate that HCH-induced Akt phosphorylation is mediated, at
least partially, by A2A receptor activation.

Of note, 33% oxygen was used in this study, while air contains
only about 21% oxygen. In our pilot study, we also explored
whether hyperoxia protected the liver against I/R injury. Mice were
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exposed to 33% oxygen and 66.7% nitrogen for 1 h, but the ratio of
injured area and ALT remained comparable to those in the I/R
group. Moreover, there is evidence that hyperoxia may worsen
the hepatic I/R injury in mice [39]. Thus, this group was not
included in this study.

This study had several limitations. First, the hydrogen concen-
tration of the liver was not detected after 1-h exposure to HCH.
In addition, because hydrogen can be administered via intraperi-
toneal injection, inhalation, and drinking, it is better to compare
the hepatoprotective effects of hydrogen administered via different
routes and investigate whether hydrogen concentration is related
to its protective effects, as Ohsa et al. found that neuroprotection
differed between 2% hydrogen and 4% hydrogen [10]. In our study,
animals received HCH treatment for only 1 h; whether prolonged
exposure to HCH or intermittent exposure to HCH may further
improve the hepatoprotection of HCH remains unclear.

Taken together, our findings indicate that hydrogen inhalation
at a high concentration can ameliorate liver I/R injury, which is
at least partially related to the A2A receptor mediated PI3K-Akt
pathway activation. Further studies using gene knock-out animals
are required to confirm our results. Hydrogen is non-toxic and can
permeate cell membranes, and it is easy and safe to produce the
stable HCH; therefore, hydrogen might be a promising gas for the
clinical treatment of liver ischemia/reperfusion injury.
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